
SVD Based Approximation of Digital Images
Report

Joseph Opitz & Angel Sanchez

M 491: Linear Algebra for Data Science and Engineering

Montana Technological University

11/24/24

1

Contents

1 Abstract 3

2 Project Background 3

3 Mathematical Background 4

4 Image to Matrix 5
4.1 Grayscale . 5
4.2 Colorscale . 6

5 Relative Error vs Rank Approximation 8
5.1 Rank Approximation . 8
5.2 Relative Error . 8
5.3 Comparison . 8

6 Using SVD to Approximate the Image Matrix to Reduce
Size 10
6.1 Algorithms . 10

6.1.1 Greedy Algorithm for Rank-r Approximation 10
6.2 Process . 11

7 Image Recompression 12
7.1 Grayscale Images . 12
7.2 RGB Images . 12

8 Principal Component Analysis vs SVD 14
8.1 Calculations . 14

9 Money and Time 15

10 Conclusion 15

11 References 16

2

1 Abstract

We will discuss how we can compress images using Singular Value Decompo-
sition for grayscale and Red Green Blue (RGB) color scale. We are exploring
the benefits of obtaining low-dimensional rank approximations for very high-
dimensional data, in our case, by keeping key elements/features for large
image matrices while reducing the size of the image.

2 Project Background

Images are stored in matrices with the corresponding pixel values. These
matrices tend to be very large, which means that they require a lot of memory
to store. Because of this, they can also be very computationally expensive to
run algorithms on. However, many images contain overlapping information,
also known as redundancies. Using these redundancies, you can compress
images into smaller matrices better. Doing this allows you to run algorithms
more efficiently on the images and save storage space. This project aims
to obtain low-dimensional approximations to very high-dimensional data, in
this case, picture elements with the image. An example is shown below with
Figure 1.

Figure 1: Example of Image Compression

In this figure, the original image has a rank of 200. By approximating
the rank a couple of times the same exact original image can be produced
with a much less reduced rank size. Displaying a good visual application of
SVD in digital images.

3

3 Mathematical Background

Singular value decomposition (SVD) is a unique matrix that exists for any
matrix X m-by-n that is real or complex where

X = UΣV T

All variables in the equation have different properties, where U is an m-
by-m square orthogonal matrix, V T is an n-by-n square orthogonal matrix
and Σ is an m-by-n diagonal matrix with nonnegative diagonal entries. These
entries of Σ are called the singular values and they order from the highest
value to the lowest value diagonally, all other entries being 0.

To obtain the singular values in Σ, you must first find your eigenvalues
(λ) using either of the following formulas. It does not matter which

λ = XXT

λ = XTX

You can use either one since both eigenvalues have the same rank and
span the same nonzero eigenspace. We can then find the singular values by
taking the square root of the found eigenvalues.

σi =
√

λi

These singular values will be arranged in descending order.

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0

Left singular vectors are obtained from finding eigenvectors of XXT and
right singular vectors are obtained from finding eigenvectors of XTX. These
vectors correspond to the columns of the matrices U and V in the singular
decomposition of X. A depiction of the variables in matrix form can be seen
in Figure 2 below.

Figure 2: SVD equation with matrix representation of each variable.

4

Basically, left singular values explain how the columns of the matrix X
are transformed by the singular values and the right singular vectors explain
how the rows of matrix X are transferred by singular values. The rank of
matrix X is equal to the number of its non-zero singular values. However, if
the matrix X is not full to begin with, some singular values can still be zero.
The magnitude of the singular values decreases so rapidly that only the first
few singular values contain much of the information of X. Singular values
are unique, but U and V are not unique.

4 Image to Matrix

Images are represented by a single matrix or an array, with each element
of the matrix corresponding to one image pixel. These are square pixels
arranged in columns and rows that represent picture details within the digital
image. There are two different types of scales that the image follows. One
being a grayscale and the other being a colorscale.

4.1 Grayscale

A grayscale image has an m-by-n matrix where m and n are vertical and
horizontal pixel directions. Each pixel contains a grayscale value meaning it
can range from 0 being black to 1 being white with every number in between
those two being a shade of gray. An example of this can be seen in Figure
3 below.

Figure 3: Diagram of the number 8 digital image being converted to matrix
with a grayscale

Here the image is in grayscale however the parameters for each pixel can
range from 0 (black) to 255 (white) and all other numbers in between being

5

a shade of gray. This is the same concept as 0 being black and 1 being white
just with different number values. The code representation of this concept is
shown below.

1 from skimage.io import imread

2 from skimage.color import rgb2gray

3

4 img = imread(’flower.jpg’)

5 print(f’A = \n{A}’)

Which outputs:

A =

[[0.22083843 0.21635137 0.20678902 ... 0.26594353 0.2816298 0.2816298]

[0.22083843 0.21635137 0.20678902 ... 0.26594353 0.27378667 0.27378667]

[0.21831569 0.21635137 0.20678902 ... 0.26677686 0.27069843 0.27069843]

...

[0.23595922 0.2124298 0.20009961 ... 0.27411137 0.25506902 0.27859843]

[0.27320275 0.23790863 0.21578588 ... 0.27467686 0.32341725 0.35086824]

[0.30065373 0.25751647 0.22362902 ... 0.27467686 0.29988784 0.33518196]]

[0.30065373 0.25751647 0.22362902 ... 0.27467686 0.29988784 0.33518196]]

4.2 Colorscale

Colorscale images are like grayscale images when it comes to being square
pixels arranged in columns and rows that represent picture details within the
digital image. A colorscale image has an m-by-n matrix where m and n are
vertical and horizontal pixel directions as well. However, in this one each pixel
contains a color value, and each pixel represents a vector of three numbers.
The vectors represent a color from the red, green, and blue colorscale. The
number inputs for each vector ranges from 0 to 255. For example (255, 0,
0) is the color red. A visual of the RBG colorscale can be seen in Figure 4
below.

6

Figure 4: Diagram of a scenic digital image represented by the RGB colorscale

Each color channel has its own number inputted for the corresponding
spot in the image to represent a color. Essentially the red channel has its
own matrix, the green channel has its own matrix, and the blue channel has
its own matrix. These are all then combined to produce a colorscale digital
image.

A demonstration for how these channels are sliced in code is shown below
in Figure 5:

1 A = imread(’flower.jpg’)

2

3 R = A[:, :, 0]

4 G = A[:, :, 1]

5 B = A[:, :, 2]

Which takes the original image and displays the following channels shown
below in Figure 5:

Figure 5: Demonstration of RGB channels

7

5 Relative Error vs Rank Approximation

5.1 Rank Approximation

So far we have explained how to perform SVD, but not how to make approx-
imations on the data in order to reduce the images, which is where rank-r
approximation comes in. So, given matrix X, upon performing SVD, we
are given the right (V T) and left (U) Singular Vectors and singular values
(Σ) that we mentioned previously. We are then able to calculate our energy
matrix, which will help in finding our best r approximation.

Er =

∑k
i=1 σ

2
i∑n

i=1 σ
2
i

Using this energy function, we will get a matrix of values that we can test
against a certain threshold. The threshold for the equation below is 95%.

r = min{r : Er ≥ 0.95}
This is what will give us the rank approximation (r) that will be used

for compressing the image, as we will only keep the first ”r” values in our
singular vectors and singular values. In this case, we will retain 95% of the
cumulative energy from the original matrix.

5.2 Relative Error

Once we recompress our image using our rank-r approximation, we have to
have a way to effectively evaluate how well it performed. This is where the
relative error function comes in, the equation for calculating this is shown
below.

e(r) =
∥Xr −X∥

∥X∥
Using this relative error function, we can effectively evaluate how well our

image reconstruction was performed.

5.3 Comparison

The more that we increase the threshold, the better the rank approximation
of the image will be. A graph demonstrating the comparison between relative

8

error and rank-r approximation is shown in Figure 6.

Figure 6: Graph demonstrating Rank Approximation vs Relative Error

However, we want to be careful to avoid becoming too obsessed with our
relative error. The reason for this is that there is a point called the elbow
point, demonstrated for this graph with the 95% threshold. The elbow point
is basically the point on the graph where we retain enough of the information
to still recognize it. But, not too much to where it no longer truly compresses
the image. An image comparing all the different thresholds and r values are
shown below in Figure 7.

Figure 7: Images demonstrating Rank Approximation vs Relative Error

9

6 Using SVD to Approximate the Image Ma-

trix to Reduce Size

6.1 Algorithms

A notable property of SVD, is it allows one to write the input matrix as
a sum of rank-1 matrices. Specifically, the matrix X can be written as the
following seen below.

X =

min{m,n}∑
k=1

σkukv
T
k

Where σk is the kth diagonal entry of Σ, uk and vk are the kth columns of
U and V . Assuming the singular values are distinct. Matrix X is expressed a
sum of rank one matrix that are orthogonal with respect to the matric inner
product. Each rank-1 matrix captures a distinct component of the matrix X.
The Frobenius norm is used for the relative error which is the square root of
the sum of the square differences between the original and the reduced images
squared divided by the square root of the original matrix. The formula can
be seen below.

|Er|
|Ar|

=

√√√√∑k
i=r+1 σ

2
i∑k

i=1 σ
2
i

As “r” increases, the error decreases, but the matrix size increases. There
is a point where increasing “r” provides diminishing returns in terms of re-
ducing the error. Therefore, an optimal rank-r must be chosen to balance
between error reduction and size efficiency.

6.1.1 Greedy Algorithm for Rank-r Approximation

The rank-one approximation means trying to represent the matrix as a sum
of one matrix that has a rank of 1. Instead of just using a rank-one approxi-
mation, the approximation can be improved by including more matrices. The
idea is to first choose the best possible rank-one matrix that approximates
the original matrix. Then, take the leftover error and find the best rank-one
approximation for it. This process is repeated each time choosing the best
approximation for the remaining errors and adding them together.

10

This is referred to as a greedy algorithm because at each step, it tries to
capture the largest possible chunk of the matrix’s structure. After repeating
this process for “r” steps, there is an approximation that has rank ”r.” If it
keeps going, eventually, the error will be reduced to zero and goes back to
the full SVD of the matrix. The SVD can be written as a sum of rank-one
matrices that are multiplied together in a specific way. This allows for an
approximation of the matrix using fewer components (lower rank) while still
capturing the most important information. The algorithm used can be seen
below.

6.2 Process

Those are the algorithms behind using SVD to approximate an image ma-
trix to reduce size and here is the step-by-step process of what is actually
happening. To reduce the size of the image while retaining its structure,
approximate the matrix by truncating its Singular Value Decomposition to
a lower rank. This process decomposes the image into its most important
components, and then approximates the original image using fewer compo-
nents, achieving compression while preserving key features. Each variable
within the SVD equation represents something different within a digital im-
age. Where the columns of U capture the directions in the image where the
information is most concentrated, the columns of V capture the details or
features of the image in those directions, and Σ measures the importance or
strength of each feature. Large values represent important details, and small
values are less significant. These singular values will order themselves from
largest to greatest as SVD guarantees below. Recall that SVD arranges the
sigular values in Σ in their decreasing order of importance:

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0

Relative error comes into play by minimizing when the largest singular
values are retained, and small values are ignored. This error represents the
“energy” threshold of the ignored singular values. In other words, it captures
how much information was lost by truncating the SVD. For example, an
energy threshold of 90% gives a relative error of 10% for singular values to
abide by otherwise they are discarded.

11

7 Image Recompression

Upon performing SVD and reducing all of our singular vectors, along with
our singular values. We must now recontruct our images that have been
reduced using our rank-r approximation. We will be demonstrating how to
do this with both grayscale and Red Green Blue (RGB) images.

7.1 Grayscale Images

For simplicity, we will start off with our grayscale images. Using our reduced
singular vectors, Ur and V T

r , as well as our reduced singular values, Σr. We
now perform the dot product to get our reduced image matrix, Xr.

Xr = Ur · Σr · V T
r

Using that formula, we now have our rank-r approximation compressed
image Xr. The way that this looks in code is shown below.

1 # Keep only the first r components

2 Ur = U[:, :r]

3 Sr = np.diag(S[:r])

4 VTr = VT[:r, :]

5

6 # Reconstruct the rank -r approximation

7 compressed = Ur @ Sr @ VTr

Which gives you the following output, shown below in Figure 8:

Figure 8: Compressing a grayscale image

7.2 RGB Images

Image recompression gets more complicated when we are working with RGB
images. As mentioned earlier, we had to split the image up into three seperate

12

channels-one red (R), one green (G), and one blue(B). So, we will have to
recompress each reduced channel individually, which is demonstrated below.

Rr = URr · ΣRr · V T
Rr

Gr = UGr · ΣGr · V T
Gr

Br = UBr · ΣBr · V T
Br

We will then want to combine these reduced channels back into their
original channel, shown below.

compressed image(x, y, 0) = Rr(x, y)

compressed image(x, y, 1) = Gr(x, y)

compressed image(x, y, 2) = Br(x, y)

This operation maps each color component Rr(x,y), Gr(x,y), and Br(x,y)
to the corresponding indices of the compressed image at pixel (x,y) for chan-
nels 0, 1, and 2, respectively. An example of how the image is split up into
channels and compressed and then recombined back into the original image.

The code is demonstrated below:

1 # Re -compress each channel using the maximum rank

2 red_comp = compress_channels(red_image , r)

3 green_comp = compress_channels(green_image , r)

4 blue_comp = compress_channels(blue_image , r)

5

6 # Create a temporary array to hold the new found

channels

7 comp_image = np.zeros_like(image , dtype=np.float32)

8 comp_image [:, :, 0] = red_comp

9 comp_image [:, :, 1] = green_comp

10 comp_image [:, :, 2] = blue_comp

Which shows the image as follows, shown below in Figure 9:

Figure 9: Image showing three channels and compressed image

13

8 Principal Component Analysis vs SVD

Principal Component Analysis (PCA) is one of the main applications of SVD
and follows many of the same steps. we still start with the X matrix that
is still m-by-n. The principal components provide an orthogonal coordinate
system regarding the mean data. These components can then be used to
reveal the maximum variation within the data.

8.1 Calculations

To find the principal components, we must first find the mean for each row
(feature). Which gives we a 1-by-n row vector x̄ of mean values for each
feature.

x̄j =
1

n

m∑
i=1

xij

Once we find the means of all features within the matrix, we can then
find the mean matrix - X̄. This is found by multiplying x̄ by a column vector
of ones with size m-by-1, which will give us our m-by-n mean matrix.

X̄ = 1m×1x̄

We then subtract the mean matrix barX from the data matrix X to get
our mean-subtracted matrix.

B = X̄ −X

SVD is then applied to this mean-subtracted matrix.

B = UΣV T

This is another point where SVD and PCA differ, now we have to find
our principal values using the following equation:

σ2
k

m− 1

The corresponding columns of V are called the principal components,
which provide an orthogonal coordinate system for the data, otherwise known
as the variances of the data.

14

9 Money and Time

Considering how powerful the SVD technique is, it can be used to save money
and time for many different applications in various fields. First, by compress-
ing images using SVD, it reduces the amount of data needed to Store them.
Smaller files mean lower storage costs. This is specifically beneficial to the
medical and engineering fields. Another way SVD saves money and time
is that compressed images are sent quicker across networks in industries.
Again, this is beneficial for areas such as telemedicine. Lastly, by using SVD
for image compression, image processing becomes quicker with less data to
compute which means less computational costs. This is important for surveil-
lance footage of people, or license plates from afar.

10 Conclusion

SVD is a popular factorization technique used in linear algebra. Mainly it
is used in the science and engineering fields. It is a powerful method for
compressing image matrices by reducing their rank. By keeping the most
significant singular values (and the corresponding vectors from U and V),
we can create a low-rank approximation that retains the essential features
of the image while dramatically reducing its size. The error in this approx-
imation can be controlled by selecting an appropriate rank-r and balancing
compression with quality.

Possible future work can include how your iPhone screen unlocks using
important features from your face. As well as how self-driving cars efficiency
and overall success could be improved through this technique. Self-driving
cars usually analyze around 30 to 60 frames per second, so having these
images be compressed will greatly increase their ability to make quick real
time decisions.

15

11 References

1. Mitra A. and Majhi S. Linear Algebra for Data Science and Engineer-
ing. https://linalg.mathematics.land. Accessed: November 2024.
Nov. 2024.

2. D. Kalman. “A Singularly Valuable Decomposition: The SVD of a
Matrix”. In: The College Mathematics Journal 27.1 (Feb. 2002), pp.
2–23. Accessed: November 29, 2024.

3. A. Ranade, S. Mahabalarao, and S. Kale. “A Variation on SVD Based
Image Compression”. In: Image and Vision Computing (June 2007).
Accessed: December 1, 2024.

4. P. Bacher. Practical Applications to SVD on RBG Images. https:

//www.kaggle.com. Accessed: December 3, 2024. Oct. 2022.

16

https://linalg.mathematics.land
https://www.kaggle.com
https://www.kaggle.com

	Abstract
	Project Background
	Mathematical Background
	Image to Matrix
	Grayscale
	Colorscale

	Relative Error vs Rank Approximation
	Rank Approximation
	Relative Error
	Comparison

	Using SVD to Approximate the Image Matrix to Reduce Size
	Algorithms
	Greedy Algorithm for Rank-r Approximation

	Process

	Image Recompression
	Grayscale Images
	RGB Images

	Principal Component Analysis vs SVD
	Calculations

	Money and Time
	Conclusion
	References

